Exhibit D:
JERICO MATIAS CRUZ'S EXAMS, LABORATORY REPORTS, \& CENGAGE ORDER ON OCTOBER 3, 2021

Submantro: October 3,202

Figure 1

1) (20 pts.) In figure 1 , charge " A " is $-5.0 \mu \mathrm{C}$, charge " B " is $+3.0 \mu \mathrm{C}$ and charge " C " is $+6.0 \mu \mathrm{C}$.

(a) Suppost wiswTow's SECOND LAN OF notion APPLEES To THFS QuAsTTON, FORCE $=$ mass \times ACCCLKRATDON $=m \times a_{0}=m \times$ $d v / d t$, Gokerse $d v=$ olerivitwiz of villocITH, $d t=$ deniative OF 1 mm . IF $(D U / D T)=0$, HEN $F=m \times 0=0$, WhEN DARINAFSNE OF VIElOCSTY IS zaxo. LET F $F_{C}=M_{a} \times Q=$

$$
\begin{aligned}
& m_{a} \times\left(d v_{a} \text { Id } t_{a} ; F_{b}=m_{b} \times a_{b}=m_{b} \times\left(d v_{b} / d b_{b}\right)\right. \\
& \text { So, } F_{c}=F_{a}+F_{b}, \text { HFR } 5 \text {, Re, } \sum F_{c}=F_{a}+F_{b},
\end{aligned}
$$

(b) SUPPOSR $\sum F_{C}=F_{a}+F_{b}$: GINEN HHAT CHARGR "A" IS $-5.0 \mu \mathrm{C}$, CHRRLOR ITB" 定S B.0 MC AnD CMARGK "C" Is +6.0 μC; point charge $A=(-10 \mathrm{~cm}, 5 \mathrm{~cm})$, at point chang $B B=(5 \mathrm{~cm}$, $5 \mathrm{~cm})$, and point change $C=(0 \mathrm{~cm}, 0 \mathrm{~cm})$.

$$
\sum F_{c}=(q a-q c)+\left(q_{b}-q c\right): S o, F_{a}=
$$

$\left(q_{a}-q_{c}\right) ; F_{b}=\left(q_{b}-q_{c}\right)$, where $q_{a}, q_{b} a^{2} q_{c}$, are pont of CHARGKS. THRREFOXR; $\Sigma F_{c}=F_{a}+F_{6}$
(c) Suppose $F_{a}=-F_{a}$. Let $F_{C}=F_{a}=F_{b}=k_{x}\left[k_{a}(q b \times q a) i r^{2}\right]$, where F is alketrosiatte Firck, $k=$ conlomb's constant or ellechostaticis Constant, $86, q_{a}=$ chareres, ANoD $R=$ distance of sceppensfon perwrea CHARGNS C ANDA. Gaver $A^{\prime}=y 5,0 \mu C$ ot $(-10 \mathrm{~cm}, 5 \mathrm{~cm}), B=+3.0 \mathrm{~m} \mathrm{C}$ at $(5 \mathrm{~cm}, 5 \mathrm{~cm})$, and $c=\neq 6.0 \mu \mathrm{C}$ at $(0 \mathrm{~cm}, 0 \mathrm{~cm})$. LET $F_{c}=F_{a}=F_{5}=$
 OR TAN θ, OR TAN ϕ. FHERRFORE, $F_{c}=k \times\left[(9 b \times q a) / r^{2}\right]$, as slope OF $R=\left[(5-5) /(5-(-10)]=0 ; \theta=45^{\circ} ; \phi=\theta 0^{\circ}\right.$
(d) Fok $1 B C$: Let $\tan \theta=01 a$, us ing trigorometre fimethon. Given $\theta=45$ charer $B=+3,0 \mu \mathrm{c}$ at $(5 \mathrm{~cm}, 5 \mathrm{cma})$; and $0=$ opposite of a tringle al a adjacent of a triagle. So $\theta=0 / a=7 a=0 / \tan \theta$; THercemp, $a=5 / \tan 45^{\circ}=5 \mathrm{~cm}$.
For $r_{a c}$: $\operatorname{let} \phi=$ ata, tasing trigo nomethe fincthon. Ginen $\phi=s^{\circ}$ Chther $A=-5 \mu \mathrm{C}$ at $(-10 \mathrm{~cm}, 5 \mathrm{~cm})$; and $a=$ adj; cent of the triAavcle. and $0=$ opposite of tringle. So, $\operatorname{tav} \phi=0 / a \Rightarrow a=0 /$ tar θ. Hertapoee $=a=-10 / \tan 45^{\circ}=-10 \mathrm{~cm}$.
(e) For Foc: let $F_{c}=F_{a}=F_{b}=k \times\left[\right.$ gaa. $q_{c} V_{a c}^{2} t_{a c}$, where $k=9 \times \omega^{9} \mathrm{~N}_{\mathrm{m}} \mathrm{m}^{2}$. $C, q_{a}, q c=$ charges, and $r=$ distance betneen $($ Aoperoles A AND C,
 $q_{b}, q c=$ charges, and $r=$ distance betheen changes b and c. So, $F_{b c}=\left(\uparrow \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} \cdot \mathrm{C}^{-2}\right) \times\left[\left(\left(+3.0 \times 10^{-6} \mathrm{C}\right) \times\left(+6.0 \times 10^{-6} \mathrm{C}\right) / 5.05^{2}\right]=\right.$
Therefore, Fbc$=64.8 \mathrm{~N}$
(fi) For Fac: $F_{a c x}=(27 \mathrm{~N}) \cos 45^{\circ}=19 \mathrm{~N} ; F_{a_{c y}}=(27 \mathrm{~N}) \sin 45^{\circ}=19 \mathrm{~N}$ For Fbc: $F_{b c} x=(64.8 \mathrm{~N})$
(g)

$$
\begin{aligned}
& \begin{array}{l}
F_{c x}=F_{a c x}+F_{b c x}=19 N+45.8205 \mathrm{~N}=64.8205 \\
F_{c y}=F_{a c y}+F_{b y y}=19 N+45.8205 N=64.8205 N
\end{array} \\
& \text { (h) } F_{C}=(64.82 i+ \\
& \text { Rage } 2016 \\
& (64.82 j) N
\end{aligned}
$$

Figure 2
2) (30 pts.) In figure 2, charge ${ }^{\prime} \mathrm{A}$ "is $-5.0 \mu \mathrm{C}$, charge " B " is $+3.0 \mu \mathrm{C}$ and charge " C " is $+6.0 \mu \mathrm{C}$.
\# 2° (b) let $\sum \vec{b}_{p_{p}}=\vec{E}_{a}+\vec{E} \vec{b}+\overrightarrow{k_{c}}$, where $\vec{E}_{p}=\overline{E l e c t r i c}$ Field at test point, $\overrightarrow{E_{a}}=$ electur Field at point charge $A, \vec{E}_{b}=$ electric pied at point chase B, and $\vec{E}_{C}=$ electric char

 $\left[\left(9 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} \cdot c^{-2}\right) \times\left(\frac{6 \times 100^{-6} \mathrm{c}}{0}\right) r_{0}=-1.8 \times 10^{+7 N}+1.08 \times 10^{+7} \mathrm{~N}+2.66 \times\right.$
$10^{7}=1.44 \times 10^{7} \mathrm{~N}$ Therefore,
(c) Suppose $V_{c}-V_{t p}=-k q \int_{t p}^{c} \frac{d r}{t^{2}}$ where $V_{c}=v o l t s$ of direction of point change L,
 of divetoon or line segment $\frac{T_{p}}{}$, $q=$ point charge C, and $r=$ distance of a posit charge C. Let $V_{c}-V_{t p}=k q\left[\frac{1}{r_{e}}-\frac{1}{v_{p}}\right)$. So, $V=k \frac{q}{r} .00 V=k(q / r)$.
(d) Let $V=k \sum_{i} \frac{g_{i}}{}$, where $k=$ number $\sum_{i}=\sum_{t p}$ som of $\frac{q_{i}}{}, g_{i}=$ amber of point change

 hectic Fix $d y=$ derivative of the area. swine

THEREFORE; $Q \in=\frac{9}{c o}$, where $\varepsilon_{0}=$ ElfestRE C constant.

 $\Delta U_{\varepsilon}=q \Delta V \Rightarrow \Delta U_{\bar{R}}-U_{\varepsilon_{p}}=q\left(U_{Q}-V_{p}\right) \Rightarrow U_{\varepsilon}$ of $(0.3 \mathrm{~m}-0.1 \mathrm{~m})$, Where $q=\dot{\lambda}=+6.0 \mathrm{MC} \mathrm{m}$. AHCRCFORK,

$$
.0 \mu \mathrm{~m}
$$

$$
\begin{aligned}
& \triangle A i=\text { chan OF in VECTR } A \\
& A_{1}=A R A \text { of } A \\
& a_{1}=\text { AREA OF THF SIPE OF Sous } \\
& \vec{E}=\text { ELRCTRLE FERLD } \\
& \theta=\text { FCRCTRIC FIRES MKS AN } \\
& \text { E = ANOLE ELECTRECD } \\
& \text { \$ = = ElétREC flux } \\
& \text { See explanation on PAGR } 6 \text { ole. }
\end{aligned}
$$

Figure 47
4) (10 pts.) A charge visits at the back corner of a block (as shown). What is the flux of \mathbf{E} through the blue region? (DONE)

Figure 5
5) (20 pts.) Two parallel plates at 100 volts have a hollow metal box (as shown) in between the plates set at 0 volts. Describe using words or equations the electric field and the electric potential in regions A, B, C and D which are along the x-axis the assumed far from the edges of box and plates. BY DEFNNETHON, DEE ELECTRAC FFCND IS A MEASERE OF THE RATE OF CHANGE OF THC EUCCRIC POTENTIAL WITH RESPECT TO POSSIFON. IN FIGURES, THE SEPARATION BETWEK THE TWO PARALLELPLATES AT 100 VOLTS IS MISPLACEMENT $=0.6 \mathrm{mETER}$, ASSUMING THE ELECTRIC FIELD BETWEEN THO PARACLELPLATES AT COOVOLTS TO BE UWLFORN THIS ASSmmPTPON IS REASONADUE IF EACH PLATE SEPARATION IS SMALL RELATHE REEATIULE TO THE PLATE DIMENSIONS, SIZE, NAD LASTLY, iN CONSERERTIO MADE ON THE LOCATIONS NEAR THE PLATE EDGES. IN ADDJTSOW, THE ELECTRIC POTENTIL REGIONS A, B, C, AND D WHECA ARE ALONG THE X-AXES FAR FROM H HR FOWlES OF BOX AND PIAFES. SEE CONTENT APRON PAGE 6 Of l.

$$
\text { Page } 5 \text { AF } 6
$$

\#4 Suppose $A=a \times a_{1}=a_{1}^{2} a_{1}=a \cos \theta ; A_{1}=a \times a_{1}=a \cdot a \cos \theta$. GIUEN THAT AREA OF A SQUARE FS GHE PRODUCT OF BOTH SHA
LET $\phi_{E}=E A_{1} A N D \phi E=E A \cos \theta$.
So, $\phi_{k}=(E \cos \theta) A=E_{n} A$
THERCFORE, $\phi_{E, i}=E_{i} \times \triangle A_{i} \cos \theta_{i}=E_{i} \times A A_{i}$
HikRE FORE, OR $^{\sim} \approx \hbar_{i} \times A A_{i}$
HHRRETORE, $\otimes_{R}^{O R} \equiv \int_{\text {Awere }} E \times d A$, where $d A=$ deninstrve of A.
$1_{0}^{\circ} \phi_{2}$ through $A=$ Positive.
(sungrur cuosen)
\#5 (A) Suppere $W=F x d s=q E \cdot d s$. where $W=$ work, $F=$ force $g=$ charge, $E=$ Electipe tsuns, and $d s=$ derivative of sanface of a plate. Let $W=-\Delta U_{E} U_{E}$ where $\Delta U_{R}=$ change inunifora Flectrice fices. So, $d U_{E}=-\omega=-q E x d s$ s. where d $u_{k}=$ derivative of untform rlichRic ffild of packeplate. THRREPORE, $\triangle U_{E}=-q \iint_{E}^{D} x d \vec{s}$, where A, B, C, ANOD ARE ELECTRIC POTENTIAL $R_{E}^{A} 6$ yous. THEREFORE, $V=\frac{U_{E}}{4}$, where $V=$ volt orvoltage.
(B) Suppose $V_{D}-V_{A}=\Delta V=-\int_{A}^{D}$ Fxds, where $A V=$ chance $\neq N$
 R'GIONS, OF BOAFIC PLATE AT 1ODV'OLTS. OFUEN THAT AV = $-\int_{A}^{D E x d s}(\cos \theta)=-\int_{A}^{0} E x d s$. LET $A V=-E \zeta_{A}^{0} d S \cdot S O$, $A V=-E d$. THEREORE, $\triangle U_{E}=q \Delta V=-q E d$, where $\Delta C_{E}=$ ChANGE IN UNFFORM ELECTRDE FULD. THEREFORE, POTATS A, B, ADDD DARE AT THE SAME RLECTREC POTÉNTELL

Pare 4 of 6
name: TERLCO MATZAS CRuz

Figure 1

1) (20 pts.) Two plates $1 \mathrm{~m}^{2}$ each have a 1 mm gap between them. What is the capacitance?

The capacitor is fully charge to 50 V then remove from the power supply, a dielectric with $\kappa=$ 2.5 is placed between the plates. What is the new voltage across the capacitor with the dielectric, remember charge q is still the same, but electric field will change?
(a) WHAT IS THE CAPACITONCE?

BY DEF INDTRON, CAPACITANCE (C), OF A CAPACITOR IS DCFFWNS

 Crivonctores. $C=Q / \Delta U$. IN ADPTID or, $C ; Q$, AND IU ARE Aluasts express em as poserave Quporiveres. SUPPOSE $C=Q / \Delta V, G I V E N$ THAT TWO POS 17^{2} ToR EXPRESSION TOR THE CAPACITANCE OF A PARALLEL - PLATE, $C=\frac{\varepsilon_{0} A}{d}$, WhERE $\varepsilon_{0}=E L E C T R I C$ CONSTANT, $A=$ AREA OF EACH
 PLATE CAPACITOR. LET $C=\frac{\varepsilon_{0} A}{d}$, GIVEN THAT $A=1 \mathrm{~m}^{2}$,

$$
\text { So, } \begin{aligned}
C=\frac{\varepsilon_{0} A}{d} & =\frac{\left(8.85 \times 10^{-12} \mathrm{c}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)\left(1 \mathrm{~m}^{2}\right)}{\left(1.00 \times 10^{-3} \mathrm{~m}\right)}= \\
& =8.85 \times 10^{-9} \mathrm{~F} \\
00 C & =8.85 \times 10^{-9} \mathrm{~F}
\end{aligned}
$$

(b) WHAT IS THE NEW VOUTAGE ACROSS THE CAPACITOR WTOH DIGCECTNLC, WITHE SAME CHARGE Q, BUTRLECTREC FIELD WILL CHANCE?

Suppose $\Delta V_{f}=k \Delta V_{\text {Si, }}$ COHERE $\Delta V_{f}=$ CHANGE IN POTENTIC
 POTENTIM DEF EPOUCR
LET $\Delta v_{f}=k \Delta v_{i}$, WAGER $k=2.5$, An $\Delta v_{i}=50 \mathrm{~V}$.
So, $\Delta v_{f}=(2,5)(50 \mathrm{~V})=1.25 \times 10^{2} \mathrm{~V}$
O. $\Delta V_{f}=1.25 \times 10^{2} \mathrm{~V}$, WHICH IS THE NEW VOLTAGE ACROSS THE CAPACITOR.

Figure 2
2) (20 pts.) An RC circuit has a $5.5 \mathrm{k} \Omega$ resistor and a $8.0 \mu \mathrm{~F}$ capacitor in series, how long will it take for the fully discharged capacitor to be charged to 95% once the switch is closed? \qquad How long would it if a second $8.0 \mu \mathrm{~F}$ capacitor is added in series? \qquad
(a) HOW LONG WTL IT TAKE FOR THE FWUY DISCHBRGEO CAPACDTR TO BE CARROLL TO 95% ONC THE SUWTCH IS ClOses?
Suppose $T=R C$, GIVEN THAT $R=5.5 \mathrm{kn}$ and $C=8.0 \mathrm{M}$ FIN
A SECS. LET. R $C=T$, WHEE $R=$ RESESTAR, $C=C A P A C I T O R$,

$\left(8.00 \times 10^{-\frac{6}{F}}\right)=0.044 \mathrm{~s}$. Let $d q / \cdot d t=\frac{c \varepsilon}{R C}-\frac{q}{R C}=\frac{1 q-C_{\varepsilon}}{R C} \Rightarrow$

$$
\frac{d q}{q-c_{\varepsilon}}=-\frac{1}{R C} \text {. Lt Let } \int_{0}^{q} \frac{d q}{q-C E}=-\frac{1}{R C} \int_{0}^{R C} d t \text {, Coff seR } q=0 \text {. }
$$

$$
\text { At } t=0 \text {. } \frac{q-\varepsilon_{\varepsilon}}{\text { So, } \ln \left(\frac{q}{-C_{\varepsilon}}\right)=-\frac{t}{R C} \text {. ContramAtron PAGE } 40 \mathrm{~F} 8}
$$

3) $(10 \mathrm{pts})$ A particle with a charge of $+9.0 \mu \mathrm{C}$ is going from left to right at $5.5 \times 10^{5} \mathrm{~m} / \mathrm{s}$. There is a 2 T field going into the paper. Using $F=q v B \sin \theta$ find the magnitude and direction of the force.
Suppose $\vec{F}=q \vec{U} \vec{B} \sin \theta$, where $\vec{A}=$ magneture of the MAGNATLC FORCE ON A CHARGES BARTSCLR, $q=C$ CHARGE OF APARTCLE, $\vec{V}=V E L O C A T Y ~ O F A ~ M O N E N G ~ P S R T E C L E, ~ A ~ \vec{B}=$
 AND \vec{B}. LET $\overrightarrow{F_{\beta}}=q \vec{u} \vec{B}$, WHERE $q=+9.0 \mathrm{uC}, V=5.5 \times 10^{5} \wedge / \mathrm{s}$, AND $\vec{B}=2 T . S O, \overrightarrow{F_{B}}=\left(+9.00 \times 10^{-6} \mathrm{C}\right)\left(5.5 \times 10^{5} \mathrm{7} / \mathrm{s}\right)(2 \mathrm{~T})=$ 19.9 N , COACH IS A MAGNETIC FORCE ON A CHARGES PARTICLE IN STATPONORY. LET FINO = $\overrightarrow{F_{B}} / \vec{F} \vec{V}=$ $=19.9 \mathrm{~N} /\left(+9.00 \times 10^{-6} \mathrm{c}\right)\left(5.5 \times 10^{5} \mathrm{~m} / \mathrm{s}\right)(2 \mathrm{~T})=1 \mathrm{OR}$ PAGE 3 of 8 (Contsmanton PAGE 4 of 8

仿 $\operatorname{San}\left(90^{\circ}\right)=1$, WHECH $\theta=90^{\circ}$
Let $\vec{F}_{D}=q \vec{V} \vec{B} \sin \theta$ FOR MOUINL CHARGED PARFCLE IN MACNETAC TSALD.
So, $\vec{F}_{B}=\left(49.00 \times 10^{-6} \mathrm{C}\right)\left(5.5 \times 10^{5} \mathrm{~m} / \mathrm{s}\right)(2 \mathrm{~T})$ SNNOO $=$

$$
=+9.9 \mathrm{~N} .
$$

$00 \vec{F}_{\beta}=+9.9 \mathrm{~N}$, WHICH IS THE MAGNITHDE OF THE MAGNETL FORCE ON A CHARGED PARTFCLE.

OO DFRECTITN OF F_{B} GTING.ONTHE EHARGED PARTECLE IS IN

\#2 $00 \mathrm{~g}(\mathrm{t})=\mathrm{ce}\left(1-e^{-t / R c}\right)=Q_{\text {max }}\left(1-e^{-t / R c}\right)$, WHERE $e=$
HRE CASE OFTHE NATMEAC LOGARZTHM AND Q MAX $=C \dot{\varepsilon}$. AT FIME $=0$,
Constat, of $(0)=Q_{\text {max }}=0$.
$00 \quad q(0.044)=\left(\frac{1-0.95 Q_{\text {max }}}{Q_{\text {max }}}\right)\left(1-e^{-t / R C}\right)$, where $R_{C}=0.0445$.

$$
q(0.44)=\left(\frac{1-0.95 Q_{\max }}{Q_{\max }}\right)(.0 .632)=0 \Rightarrow 0.6004 Q^{2}-0.632 Q_{\bar{B}}
$$

$-b_{-}^{+} \sqrt{b^{2}-4(a)(c)} / 2 a$, WHERE $a=0.6004, b=0.632$

$$
\begin{aligned}
& Q_{A_{1}}=0.358 \mathrm{~V} Q_{\text {man }_{2}}=-1.6572
\end{aligned}
$$

$$
\begin{aligned}
& \text { AND } t=R C / \operatorname{la}(1.84) / 1.84=0.044 \mathrm{~s} \ln (184) / 1.84=0.01458 \mathrm{~s} \\
& \text { PAGE } 40 F 8 \text { CONTAN HALON PHOE } 6 \text { OF } 8
\end{aligned}
$$

4) (10 pts .) If the charge in problem 3 has a mass of $3.0 \times 10^{-7} \mathrm{~kg}$, what is the radius of curvature for the particle's motion?
SUPPOSE $\overrightarrow{F_{B}}=q U B=\frac{\text { MV }}{\text { }}$, K SANG THE SAME NOTATIONS EN PROBLEM $\$$ wiTH $\vec{B}=q \vec{v} \vec{B}, m=$ MASS and $r=$ radius,

$$
\begin{aligned}
& \text { Let } r=\frac{m v^{2}}{q \dot{B} \vec{B}}=\frac{m v}{q B} . S O, r=\left(3.0 \times 10^{-7} \mathrm{~kg}\right)\left(5.5 \times 10^{5} \mathrm{~m} / \mathrm{s}\right) / \\
& \left(+9.00 \times 10^{-6} \mathrm{C}\right)(2 \mathrm{~T})=0.016 \mathrm{~m} \text { or } 1.67 \times 10^{-2} \mathrm{~m} \text {. }
\end{aligned}
$$

$\therefore \quad \therefore=1.67 \times 10^{-2} \mathrm{~m}$, WHICH IS THE RADIUS OF CURVATURE OF THE PARFFCLE'S MOTION IN CIRCULAR PATH.
5) (10 pts.) Magnetic torque is:

$$
\tau=B I A \sin \theta
$$

A loop of wire has a radius of 3 cm and is 30 degrees to a 2 T field with 1.5 A current. What is the torque (state units)? $4,24 \times 10^{-3} \mathrm{~N}=\mathrm{m}$

SUPPOSE $\vec{F}_{2}=\vec{F}_{4}=I_{a} \vec{B}$, WHSLE F_{2} AND F_{4} ARE MAGNETS FORCES OF MAGNETS TORQUE, $I_{a}=$ CURRENT OF THE BEGANNWV OFTHR
 WHAT T max In Ax Oman ToRQuE. CET T - IABSNO θ, WHERE $0^{\circ} \leq \theta \leq x$. LET $A=$ AREA OF A COOP $=$ ALE OF A CHANT $=\pi r^{2}$
So, $A=\pi r^{2}=\pi(3 / 100)^{2}=2.83 \times 10^{-3} \mathrm{~m}^{2}$.
SO, $T=$ BIA 3 IN $\theta=(2 T)(1.5 \mathrm{~A})\left(2.83 \times 10^{-3} \mathrm{~m}^{2}\right) 3 \pm 030.0=$ $4,24 \times 10^{-3} \mathrm{~N} \cdot \mathrm{~m}$
$\begin{aligned} & 0 \\ & 0 . T\end{aligned}=4.24 \cdot X^{-3} \mathrm{~N} \cdot \mathrm{M}$, WHICH IS THE MAGNETIC TPRQLIE

FR(b) HOW CONG WOUCD IT TAKE IF A SECOND 8 OUF CAHACSTOR IS ADDED IN SERFES?
Suppose $=R C=T$. CET C equiratence $=\left[\frac{1}{C_{1}}+\frac{1}{C_{2}}\right]_{1}$
WHEREC $=8.0 \mathrm{UF}$, AND $C_{2}=8.0 \mathrm{MF}$. LET $T=R C_{\text {R }}=\left(5.5 \times 10_{\mathrm{N}}^{3}\right)$
$=0.022$ S
So, $f=(022)=$ $\left(\frac{1-0.95 Q_{\text {max }}}{Q_{\text {max }}}\right)\left(1-e^{-t / R c}\right)$, WHERE RC $=0.022$ s. USing THE RESMET FROM QUADRATIC EQUATEON ON (a) TO FTOD Q Q max AT 95% CHARGEP OF Ceqnivalence.
\therefore AT $95 \%, Q_{\max }=1.84 \mathrm{~V}$ ANDE $=R C \ln (184) / 1.84=0.0072 \mathrm{~g}$.
\therefore AT $95 \%, t=0.00729$ s, wAECA WILL IT TAKE FOR YHR FUCLY OISCHARGGD CAPACITTRS EQUTUALENCLE TO DR CMARGES.
\#S IN A 2000 OF WSRE
6) (20 pts.) Find the current through each of the three resistors.
 Suppose $I_{1}+I_{2}-\sigma_{3}=0$, wHERE $I_{1}=$ Cure intirarestsion $1, I_{2}=$ CURRANT IN RESASTOR: 2 , AND $I_{3}=$ CUREGNT IN RESISTDR 3. APPIYING KIRCAHOFF'S TUWCTEON RULE, LET $I_{2}=I_{1}+I_{3}$, AND START AT POINT C. INGENERAC, KIRCHHOFF' JUNCTON IS GOTAG Clackeliss HROUND Lop ABCFATO OBAD N: $8 Q 1 / 25 \mathrm{kn} F_{2}-5 k n I_{1}=0$. LET $I_{1}=(12 \mathrm{~V} / 15 \mathrm{kn})-\left(\frac{35 \mathrm{k}}{15}\right) I_{2}=\left(\frac{12 \mathrm{~V}}{15000 \mathrm{~N}}\right)-\left(\frac{35000 \mathrm{~N}}{15000 \mathrm{~N}}\right) \mathrm{I}_{2}$. So, $8.0 \times 10 I_{1}=\left(8.00 \times 10^{-4} \mathrm{~A}\right)-(2.3) I_{2}$
 EDGE TO OBTAIN: $6 \mathrm{~V}-35 \mathrm{kOI}-25 \mathrm{kN} I_{3}=0$. LET $I_{3}=$ $(6 \mathrm{U} / 2 \mathrm{k} \mathrm{kan})-(35 \mathrm{kR} / 25 \mathrm{k} 1) I_{2}=(6 \mathrm{U} / 25000 \mathrm{n})-\left(\frac{35000 \mathrm{a}}{25000 \mathrm{n}}\right) I_{2}$.

CONTUUAHEOAN PASE 8048 7) (10 pts.) Aluminum has a resistivity of 2.8×10^{-8} ohm-meter. How would you shape $0.001 \mathrm{~m}^{3}$ of Aluminum so it would have 1 ohm of resistance? (more than one correct answer)

SUPPOSE $R=\rho \frac{l}{A}$, WHERE $R=R E S T S T D N C E, ~ \rho=R E S I S T$ VAT

 $2 \pi r^{2}+2 \pi r h=2 \pi \cdot\left(\frac{0.001 \mathrm{~m}^{3}}{\pi h}\right)+2 \pi\left(\sqrt{\frac{0,001 \mathrm{~m}^{3}}{\pi h}}\right)\left(\frac{0.001 \mathrm{~m}^{3}}{\pi / \mathrm{m}^{2}}\right)$.
LET $J=\sigma E$, WHERE $J=$ CURRENT DENSITY OF AL WIRE, $\sigma=$ CONDUCTAUTY OF $A L$ WIRE, ANS $=$ ELRCTRECFELS. LET $\triangle V=V_{6}-V_{9}=E l$, WHERE $\Delta V=$ POTENTIAL DIFFERENCE BETWEEN V_{b} AND V. LET $A V=E X=\frac{l J}{\sigma}$ $=\left(\frac{l}{\sigma A}\right) I=R I$, wheRe $I=$ CurReNT: So, $\triangle V=R I \Rightarrow R E \Delta V / I$.

$$
\begin{aligned}
& \text { A6 SO, } I_{3}=\left(2.4 \times 10^{-4} \mathrm{~A}\right)-(1.4) I_{2} \text {. } \\
& \text { LET } I_{2}=I_{1}+I_{3}=\left(8.00 \times 10^{-4} \mathrm{~A}\right)-(2.3) I_{2}+\left(2.4 \times 10^{-4} \mathrm{~A}\right) \\
& -(1.4) I_{2} \text {. } \\
& \text { So, } I_{2}=\left(1.04 \times 10^{-3} \mathrm{~A}\right)-(3.7) I_{2} \Rightarrow 4.7 I_{2}=1.04 \times 10^{-3} \mathrm{~A} \\
& \Rightarrow I_{2}=\left(104 \times 10^{-3} \mathrm{~A}\right) / 4.7=2.21 \times 10^{-4} \mathrm{~A} \\
& 00 I_{R_{I}}+I_{R_{2}}-I_{R_{1}} \cong 0 \text {, wHIRE } I_{R_{I}}=\text { CuRRENT OF RESISTAR1, } \\
& I_{R_{2}}=\text { CURRONT OF RESISTOR 2, AND } F_{R_{3}}=\text { CURRONT OF RESESTOR } 3 \text {, } \\
& \therefore I R_{1}=\left(8.00 \times 10^{-4} \mathrm{~A}\right)-(2.3)\left(2.21 \times 10^{-4} \mathrm{~A}\right)=2.92 \times 10^{-4} \mathrm{~A} \\
& I R_{2}=2.21 \times 10^{-4} \mathrm{~A} \\
& I R_{3}=\left(2.4 \times 10^{-4} \mathrm{~A}\right)-(1.4)\left(2.21 \times 10^{-4} \mathrm{~A}\right)=-6.94 \times 100^{-5} \mathrm{~A} \\
& \text { \#7 :0 } R=\rho \frac{l}{A}=\left(2.8 \times 10^{-8} \cdot m\right)\left(\frac{0.001 m^{3}}{\pi \pi^{2}}\right)\left(2 \pi\left(\frac{0.001 m^{3}}{\pi h}\right)+\right. \\
& 2 \pi\left(\sqrt{\frac{0.001 \mathrm{~m}^{3}}{\pi h}}\right)\left(\frac{0.001 \mathrm{~m}^{3}}{\pi r^{2}}\right) \\
& 00 R=\left(2.8 \times 10^{-8} \Omega \cdot m\right)\left[\frac{\left(\frac{0.001 \mathrm{~m}^{3}}{\pi r^{2}}\right)}{2 \pi\left(\frac{0.001 \mathrm{~m}^{3}}{\pi h}\right)+\pi\left(\sqrt{\frac{8.001 \mathrm{~m}^{3}}{\pi h}} \sqrt{\frac{0.001 \mathrm{~h}}{}{ }^{3}} \frac{\pi r^{2}}{\pi / 2}\right.}\right]
\end{aligned}
$$

Figure 1

1) (30 pts.) A 3.00 T magnetic field is going into the page while a metal bar of mass 0.03 kg is being pulled at $9.00 \mathrm{~m} / \mathrm{s}$ in the direction shown. Resistor R1 is 10 ohms , what direction and magnitude of the current flowing through the resistor?
At time $=0 \mathrm{~s}$, the bar is no longing being pulled and is sliding without friction at $9 \mathrm{~m} / \mathrm{s}$. Find an equation for velocity versus time then find the velocity after 1 second of sliding.
(a) WHAT DTRECTTON AND MAGNITUDE OF THE CUKRENT FLOWING THROUGH THE RESISTOR?
Suppose $I=\frac{|E|}{R}$, ware $I=$ MA GNDTHDE of THE InDuces curesut

 LAN OF INDUCTION, LET $\varepsilon=-\frac{d \Phi_{B}}{d t}$, WHERE $\Phi_{B}=\sqrt{\vec{B}} \cdot d \vec{A}$ IS THE MAGNSICC Flux THROMG THE LODA. LET $\Phi_{B}=B l X$, AS THE AREA OF THE CIRCUiT CHANGES
 Dene ring g $=|8.10 \mathrm{~V}| \quad I=\frac{|E|}{R}$

 $=\frac{18.10 \mathrm{~V}}{10.0 \Omega}=8.10 \times 10^{-2} \mathrm{~A}$. THEREFORE, THE MAG NETUDE OF INDUCED CURRENT FLOWING THROUGH THE RESISTOR IS $8.10 \times 10^{-2} \mathrm{~A}$; AND THE

SEE DSAGRAM 2 ABOUT THE R DFRECTO KNAKA floware theonot thre Resestor.
(b) FEND AN EXUATION FOR VElOCAY VEROUS THME.

SKPPOSE $F_{B}=-I, B$, WHELE (T) SIGN SHOWS THAT THE MAGNETHC FORCE IS

PFSTANCE BETWCE TWO PAETUCL RTLUS OFTHA BAK, MND B = MACNETHPE OF THE
 $-F l B=m \frac{l v}{d t}=-\left(\frac{b l v}{R}\right) l s=-\frac{B^{2} l^{2}}{R} v$, wheRE $m=$ mass, $a=$ RCcclephicion, nos $I=\frac{B l v}{R}$ from Questron (a). Let $\frac{d v}{v}=-\left(\frac{B^{2} l^{2}}{m R}\right) d t$, whare $v=v E l o c e T$ I. At $t=0$ AND $V=v_{i}$, LET $\int_{v_{i}}^{v^{t}} \frac{d v}{v}=-\frac{B^{2} l^{2}}{m R} \int_{0}^{t} d t$, wharke $\frac{B^{2} l^{2}}{m R}$ REMACNS CONSTANT. Let $T=m R / B^{2} l^{2}$, WHERE $T^{0}=S$ THE INUERSE OF $\frac{B^{2} l^{2}}{m R}$. Let $\ln \left(\frac{u}{v_{i}}\right)=-\ln -t / \tau \Rightarrow \frac{v_{f}}{v_{i}}=e^{-t / T}$ THEFORE, $v_{f}=v_{i} e^{-t / \pi}$ wHERE $V_{f}=$ EINDL VELOCETT, $U_{i}=$ INITIAL VELCCATY, AND $e^{-t / T}=$ EXPRESSEON OF NEGATIUE TIME DIUEDES BY TAM, WHICH IS ERUAL TO $\mathrm{MR} / \mathrm{B}^{2} \mathrm{l}^{2}$?
(c) FIND THE VELOCITY AFTRE 1 SECONS OF SLEDNIG.

Suppose $v_{f}=v_{i} e^{-t / t}$ uSANG THE DEFINLTITON FCOM TUESTON (b). LET $\tau=\frac{m R}{B^{2} l^{2}}$, WHERE $m=0.03 \mathrm{~kg}, R=10 \Omega, B=3.00 \mathrm{~T}$, AND $l=0.30 \mathrm{~m}$. So, $\tau=\frac{(0.03 \mathrm{~kg})(10 \Omega)}{\left[(3.000)^{2}(0.30 \mathrm{~m})^{2}\right.}=3.70 \times 10^{-1} \mathrm{~kg} \cdot 0 \mathrm{amm} / \mathrm{T}^{2} \mathrm{~m}^{2}$
So, $V_{f}=V_{i .} \mathrm{V}^{-t / \tau}$, WHERE $V_{i}=9.00 \mathrm{n} / \mathrm{s}, t=1 \mathrm{~s}$, AND $\tau=3.70 \times 10^{-1} \mathrm{~kg} \cdot 0 \mathrm{hm}$
 $=6.03 \times 10^{-1} \mathrm{~m} / \mathrm{s}$.
$006.03 \times 10^{-1} \mathrm{~m} / \mathrm{s}$ IS THE FINR VELOCITY AFTER 1 SECOND OF 540 ITN6.

2) (20 pts.) Two one-meter rods are separated by 0.01 m with the bottom rod resting on a table and the top rod levitated by forces due to current in the rod below. Both rods have 1.00 amp of current. What is the mass of the top rod and what is the direction of current flow through the top rod?
(a) WHAT IS THE MASS OF THE TOP ROD?
 Suppose $\sum \vec{F}=\vec{F}_{1}+\overrightarrow{=}=0$, where $\sum \vec{F}=$ Sum of Au FORCAS OR TOTAL FORCE, $F_{1}=$ MAGNETIC FORCE EXERTED FROM ROD RESTING ON A TABLE, AND $F_{y}=$ GRAUSTARCOWHC FORCE EXARTRO FROM THILTOP ROD LEVITATED BY MAGNETIC FORCE DUE TO CURRENT ON THE ROD STANG ON A TABLE. LET $F_{1}=I_{1} l b_{2}$, where $I_{1}=1.00 \mathrm{~A}, l=1.00 \mathrm{~A}, B_{2}=\left(\frac{\mu_{0} I_{2}}{2 \pi a}\right)$. Let $B_{2}=\frac{\mu_{0} I_{2}}{2 T_{a}}$, WHERE $\mu_{0}=4 \pi \pi_{10}-7$ $T-\mathrm{M} / \mathrm{A}, I_{2}=1.00 \mathrm{~A}$, TOD $a=0.01 \mathrm{~m}$. LET $F_{1}=I_{1} l B_{2} \cos \theta \hat{k}=\frac{I_{1} l I_{\mu_{0}}}{2 \pi a} \cos \theta \hat{k}$. LET $F_{g}=-m g \hat{k}$, WHERE $m=$ maSS of THE TOP ROD COULTATE $2 \pi a$, AT AND $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ Let $\sum \vec{F}=\overrightarrow{F_{I}}+F=0=\frac{\mu_{0} F_{1} I_{2}}{2 \pi a} l \cos \theta \hat{k}-m g \vec{k}=0$. So, $m g \hat{k}=\frac{\mu_{0} I_{1} I_{2}}{2 \pi a} l \cos \hat{\Rightarrow} 2 \pi a m g \hat{k}=\mu_{0} I_{1} I_{2} l \cos \theta \hat{k} \Rightarrow$ $m=\frac{t_{0} I_{1} I_{2} l \cos \theta \hat{k}}{2 \pi a g \hat{k}}$, WHERE $\theta=0^{\circ}=1$ OR $\theta=90^{\circ}=0$. 60 mass of THETOPROD $=\frac{\left.\left[\left(4 \pi \times 10^{-7} T \cdot \mathrm{~m} / \mathrm{A}\right)(1.00 \mathrm{~A})(1.00 \mathrm{~A})(1.00 \mathrm{~m}) \cos \left(0^{\prime}\right)^{\circ}\right) \hat{k}\right]}{\left[2 \pi(0.01 \mathrm{~m})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)\right]}=$ $=2.04 \times 10^{-6} \mathrm{~kg}$
(b) WHAT IS THE DRREIIION OF CURRENT FLOW THRROU64 THE TOP ROD?
Suppose $F_{g}=F_{2}$, USING THE EQUATION ON QUESTION $2(a)$.

LET $\mathrm{Fg}=+\mathrm{mg} \hat{\mathrm{K}}$, WHERE $\mathrm{m}=$ MASS OF THE TOPROD $=2.04 \times \mathrm{w}^{-6} \mathrm{~kg}$, AND $g=9.80 \mathrm{~m} / \mathrm{s}^{2}$. LET $F_{1}=\frac{\mu_{0} J_{1} I_{2} l}{2 \pi a} \cos \theta \hat{k}$, WHERE $I_{1}=I_{2} \# 1.01 A_{1}$, $l=100 \mathrm{~m}, \theta=0^{\circ}=1$, AND $a=0.01 \mathrm{~m} . \operatorname{Let}-m g \hat{k}=\mu_{0} I_{1} I_{2} l \cos \theta \hat{k} \Rightarrow$ $\mu_{0}=\frac{+m g \hat{k}_{2} \pi a}{\left.I_{1} I_{2} l \cos \theta\right)_{k}} S 0, \mu_{0}=\frac{+\left[\left(2.04 \times 10^{-6} / \mathrm{kg}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(2 \pi)^{2 \pi}(0.01 \mathrm{~m})\right]}{\left[(1.00 \mathrm{~A})(1.00 \mathrm{~A})(1.00 \mathrm{~m}) \cos \left(0^{\circ}\right)\right]}=$ $=+1.26 \times 10^{-6} \mathrm{~T} \mathrm{~m} /$ A. THEREFORE, μ_{0} IS A CONSTANT, ALSO kNown AS THE PERMEABILITY OF FREE SPACE, WHICH ES FCQUEVAL TUT TO $4 \pi \times 10^{-7} \mathrm{~T} . \mathrm{m} / \mathrm{A}$.

- USING CURRENT BALANCE, $n g \tilde{K}=\frac{\mu_{0} I_{1} I_{2} l}{2 \pi a} \operatorname{CoSak}$, THE TOP RODS IURCNT RUNNING/FLOWFNG IN OPPOSITE DIRECTION. EVEN HHOUGHRTWO THESE RODS STRAIGHT, PARALLEL OF CURRENT ARE CARRYING THE SAME MAGNFTUDE OF CURRENT. IN ADDITION, USING GREAT BALANCE, IT WILL ALLOW YOU TO MEASURE THE FORCE OF REPULSE
PARALLL BETWEEN TWO STRAIGHT, RODS, CARRY ENG THE SAME MAGNiTUDE OF CURRENT SEEDFAGRAO 2 .

3) (30 pts .) Magnetic tape is running at $2 \mathrm{~m} / \mathrm{s}$ past closed loops of total area $0.001 \mathrm{~m}^{2}$. The magnetic field on the tape changes:
$B=0.03 T x^{2}$, where x is distance in meters.
Assume the loops are thin, so flux is uniform for the whole area and $\mathrm{B}=0$ at $\mathrm{t}=0$, what is the voltage after 0.5 s ?
(a) FEND THE EMF IN THE WOP AS A FUNCTION OF TTME. Suppose $\varepsilon=-\frac{d}{d t}(B A \cos \theta)$, Where $\left.(B A \cos \theta)\right)^{s(n}$
 A lOop enclosing an beta (a) and specefyente in i faure,
A UWZRKM MOWWETLC FIND (B) WITH ANGLE (θ) BETWEEN THE MAGNATE AsHe AND THE NOUn COOP. LET $\varepsilon=-\frac{d E_{B}}{d t}=\frac{-d(B A C O S \theta) \text {, }}{d t}$ WHERE \vec{B}, A, ANGLE θ BETWSEN dI $d t$
A

- FHCRDAY'S LAN OF INDUCTION. SEE DIAGRAM 1 OF - THE MAGNETIC TAPE RECORDING. LET $B=0.03 T T^{2}$, WHERE $X=O$ STANE IN METERS. LI $\frac{d x^{2}}{d t}=2 x=2 V$. LET $B=$ DHGRAm 1 mewtrevter $B=0.03 \mathrm{~T}(2 \mathrm{~V})$, BY SuBSTITUTiNG $\frac{d^{2} x^{2}}{d t}=2 \mathrm{X}=2 \mathrm{~V}$. $L E T \Phi_{B}=B A \cos \omega t$, WHERE Φ_{B} F FA WEBER W = ANGULAR SPREAD OF THE MAGNETIC TAPE., AND $t=$ THEE, LET $\omega t=\theta$ So $\varepsilon=-\frac{d \Phi}{d t}=-\frac{d}{d t}(B A \cos (\omega t))=\operatorname{H}_{\omega} B A \sin \omega t$ vols, WHERE $\omega=2 \mathrm{~m} / \mathrm{s} \cdot \omega \quad \varepsilon(t)=\omega B A \sin (\omega t) \mathrm{V} / \mathrm{H}_{\mathrm{s}}=(2 \mathrm{~m} / \mathrm{s})(0.03 \mathrm{~T}($ $2\left(\frac{2 \mathrm{~m} / \mathrm{s})}{\mathrm{h}^{2}}\left(0.00 \mathrm{~m}^{2}\right) \sin [(2 \mathrm{~m} / \mathrm{s})(t)]\right.$ volts $=(2.4 \times 10-4) \sin (2 t)_{\text {eats }}$.

(b) WHAT IS THE UOLTAEE AFTER 0.5 ??

SUPPOSE $\varepsilon(t)=2.4 \times 10^{-4} \operatorname{Sin}(2.00 t)$ Volts, wHERE t is

In SECOND. LET $t=0.55$, aSSumING THE LOOPS ARE THEN, AND SO THE TH* IS UNARM FOR THE WHORE AREA AND $B=0$ AT $t=0$. So, $\varepsilon(t)=2.4 \times 10^{-4} \mathrm{SJu}(2.00 t)$ volts $\Rightarrow a t t=0_{s}$, $\varepsilon(0)=2.4 \times 10^{-4} \operatorname{Sen}(2 \cot (t))=0$ VOLT $=0 \mathrm{~V}$.SO, at $t=0.55, \varepsilon(0.5)=2.4 \times 10^{-4} \operatorname{SiN}(2.00(0.5))$ volts.

$$
\begin{aligned}
& 0 \quad \varepsilon(0.5)=2.4 \times 10^{-4} \operatorname{SIN}(2.00(0.5)) \stackrel{11+5}{=} 2.4 \times 10^{-4} \\
& 00 \operatorname{SIN}(1) \text { vols }_{=}^{=}\left(2.40 \times 10^{-4}\right)\left(1.74 \times 10^{-2}\right) \stackrel{\text { volts }}{=} 4.18 \times 10^{-6} \mathrm{~V} .
\end{aligned}
$$

4) (20 pts .) Find the current as a function of time for an RL circuit starting with, $\varepsilon=$ $-L \frac{d I}{d t^{\prime}}, \varepsilon=I R$ and Kirchhoff's rules. Assume that $\mathrm{I}=0$ at $\mathrm{t}=0$ and explain each step. Find the power dissipated by the resistor then find total energy dissipated after time t.
(a) FIND THE CURRENT AS A FUNCTLON OF THME FOR AN RI CIRCUIT STARTING WITH, $\varepsilon=-L \frac{d l}{d t} ; \varepsilon=I R$ AND KIRCHHOFF'S RULES.
$\operatorname{SUPPOSE}=\frac{\Sigma}{R}$, WHORE $I=$ CURRENT, $R=R$ RSSSTINCE, AND $\varepsilon=$ EMFOR ELRCTROMOTWE FORE. LET $x=(E / R)-I$, WHERE $d x=-d I$, LET $\varepsilon=-\frac{L I}{d t}$, USTALG KIRCHHOFF'' sloop EQUATION, LET $x+\frac{L d x}{R d t}=0$. $\operatorname{So}, \frac{d x}{x}=-\frac{R}{L} d t$.

$$
=\frac{\varepsilon}{R}(1-1)=\frac{\varepsilon}{R}(0)=0
$$

oo At $t=0, I=0$.

$$
\begin{aligned}
& \text { SO, } \int_{R}^{L_{t}} \frac{d x}{x}=-\frac{R}{L} \int_{t_{i}}^{t_{f}} d t \hat{\jmath} \Rightarrow I(t)=\frac{\varepsilon}{R}\left(1-e^{-R t / L}\right) . \\
& 60 \quad I(t)=\frac{\varepsilon}{R}\left(1-e^{-R t / L}\right) \\
& \therefore \text { o At }=0 \text {, } F(0)=\frac{\sum}{R}\left(1-e^{-R(0) / L}\right)=\frac{\Sigma}{R}\left(1-e^{(0)}\right)=
\end{aligned}
$$

(b) FSWD THE POWER DESSEIOTED BY THE RESESTOR. SUPPOSE $P=I \triangle V_{R}$, WHERE $P=$ POWER, $I=$ CURKENT, $\triangle V_{R}=$ POTENTIN DFFFEREVCE OF RESISTOR. LET $P=I \Delta V_{R}=$ $I(I R)$, WHERE $\Delta V_{R}=I R$. SO, I $\Delta V_{R}=I(I R)=I^{2} R$. $00 P_{R}=I \Delta V_{R}=I(I R)=I^{2} R$, WHERE $P_{R}=$ POWER OF RESESTOR DISSEPATED FN WATTS.
(c) FIND The TOTAL ENERGY DISS工凡QATED AETER TTME
 FORCE, $\triangle V_{R}=$ POTENTEAL PIFFES POTENTEAL DFFFERENCE OFFADDNCTOR ORSASTOR, AND $\Delta V=$ Rures. Let $\Delta V_{R} L \frac{d i}{l t}=\Delta V_{L, \uparrow} L L E T \quad P_{R}=I \Delta V_{R}=I(I R)=I^{2} R$ U Uswich THE POWER OR OWNSTEXATEO EY THE RESISTOR. LET $U=\frac{1}{2} C I^{2} \Rightarrow$ $\frac{d U}{d t}=L I \frac{d I}{d t}$, INSEREFS, LET $I=\frac{\varepsilon}{R}\left(1-e^{t / \tau}\right)$, WHERR $\tau=\frac{L}{R}$. LRT $\frac{d I}{d t}=\frac{\varepsilon}{L} e^{-t / \tau}$ LEt $e^{-t / \tau}=1-\frac{ \pm R}{\varepsilon}$ SUBSTITUTENG $\frac{d \tau}{d t}=\frac{\varepsilon}{L} e^{-t / \tau}=\frac{\varepsilon}{L}\left(1-\frac{I R}{\varepsilon}\right)=I\left(\varepsilon-I_{R}\right)$. SHBSTITUTING $\frac{d v}{d t}=L I \frac{d t}{d t}=I(\varepsilon-I R)$ uSEnG THE POWER ORENERGY PESSCRATEA BY THE WNDNCTOR. SO, $i=\frac{\varepsilon}{R} e^{-t / \tau^{-t}}=$ $I_{i} e^{-t / \gamma}$ WHERG I InTIDNDTA GURRAN $=\varepsilon / R$, ANO $i=$ CuRRSANT. $00 i(t)=I_{\text {initial }} e^{-t / \tau}$
 to LAW OF CONSERUATOW OR EVERGY COnSRecunzon, THE TOTA POWER ASEMPR FROM E TD R AnD $\frac{L}{\text { TPABE } 8 \text { ofs } \text {. }}$

The purpose of this exercise is to review the rules of vector addition and explore the force between point charges.

1) Download this Word Document to your computer. Rename this file to

You will edit this document. Feel free to add lines and adjust the spacing as needed. Add your name to the top of this page. (DONE)
2) Consider a system of three, point charges as follows

On a separate sheet of paper, find the x and y components of the net force on charge q_{1}. You should sketch the system and indicate the direction of the force from q_{2} on q_{1} and the force from q_{3} on q_{1}. (DONE)

Mathematical Proofing of Newton's Second Law \& Newton's Third Law: Net Force \& Electrostatic Force

(1)Newton's Second Law

Suppose Newton's Second Law $=$ Force $=$ mass x acceleration $=\mathrm{mxa}=\mathrm{mx}(\mathrm{dv} / \mathrm{dt})$, given $\mathrm{v}=$ velocity, $\mathrm{t}=$ time. If $(d v / d t)=0$, then $F=m \times 0=0$, when derivative of velocity is zero. Let $F_{1}=m_{1} \times a_{1}=m_{1} x\left(d v_{1} / d_{1}\right) ; F_{2}=$ $\mathrm{m}_{2} \mathrm{X} \mathrm{a}_{2}=\mathrm{m}_{2} \mathrm{x}\left(\mathrm{dv}_{2} / \mathrm{dt}_{2}\right)$.

So, $\Sigma \mathrm{F}_{\text {net }}=\mathrm{F}_{1}+\mathrm{F}_{2}=\left[\mathrm{m}_{1} \mathrm{x}\left(\mathrm{dv}_{1} / \mathrm{dt}_{1}\right)\right]+\left[\mathrm{m}_{2} \mathrm{x}(\mathrm{dv} 2 / \mathrm{dt} 2)\right]$.
Therefore, $\Sigma \mathrm{F}_{\text {net }}=\mathrm{F}_{1}+\mathrm{F}_{2}$.

(2) Finding Net Force Using Newton's Second Law

Suppose $\Sigma \mathrm{F}_{\text {net1 }}=\mathrm{F}_{2}+\mathrm{F}_{3}$. Given $\mathrm{q}_{1}=+1.5$ micro C located at $(0 \mathrm{~cm}, 0 \mathrm{~cm}) ; \mathrm{q}_{2}=+0.2$ micro C located at $(3 \mathrm{~cm}, 1$ $\mathrm{cm})$; and $\mathrm{q}_{3}=-0.2$ micro C located at $(4 \mathrm{~cm}, 3 \mathrm{~cm})$. Let $\sum \mathrm{F}_{\text {net1 }}=\left(\mathrm{q}_{3}-\mathrm{q}_{1}\right)+\left(\mathrm{q}_{2}-\mathrm{q}_{1}\right)$.

So, $\mathrm{F}_{2}=\left(\mathrm{q}_{3}-\mathrm{q}_{1}\right) ; \mathrm{F}_{3}=\left(\mathrm{q}_{2}-\mathrm{q}_{1}\right)$.
Therefore, $\Sigma \mathrm{F}_{\text {net1 }}=\mathrm{F}_{2}+\mathrm{F}_{3}$.

(3) Finding Net Force/Electrostatic Force Using Newton's Third Law

(a) Suppose $\mathrm{F}_{1}=-\mathrm{F}_{2}$. Let $\mathrm{F}_{1}=\mathrm{F}_{21}=\mathrm{F}_{31}=\mathrm{kx}\left[\left(\mathrm{q}_{1} \times \mathrm{q}_{2}\right) / \mathrm{r}^{2}\right]$, where F is electrostatic force, $\mathrm{k}=$ Coulomb's constant or electrostatic constant, $\mathrm{q}_{1}, \mathrm{q}_{2}=$ charges, and r distance of separation between charges 1 and 2 . Given
$\mathrm{q}_{1}=+1.5$ micro C located at $(0 \mathrm{~cm}, 0 \mathrm{~cm}) ; \mathrm{q}_{2}=+0.2$ micro C located at $(3 \mathrm{~cm}, 1 \mathrm{~cm}) ;$ and $\mathrm{q}_{3}=-0.2$ micro C located at ($4 \mathrm{~cm}, 3 \mathrm{~cm}$).

Let $\mathrm{F}_{1}=\mathrm{F}_{21}=\mathrm{F}_{31}==\mathrm{kx}\left[\left(\mathrm{q}_{2} \times \mathrm{q}_{3}\right) / \mathrm{r}^{2}\right]$, given F is electrostatic force, $\mathrm{k}=$ Coulomb's constant or electrostatic constant, which is to $9 \times 10^{9} \mathrm{~N} . \mathrm{m}^{2} . \mathrm{C}^{-2}, \mathrm{q}_{2}, \mathrm{q}_{3}=$ charges, and $\mathrm{r}=$ distance of separation between charges 2 and 3 .

So, $\mathrm{F}_{1}=\mathrm{kx}\left[\left(\mathrm{q}_{2} \times \mathrm{q}_{3}\right) / \mathrm{r}^{2}\right]$, given r is the slope of $\left(\mathrm{q}_{2}, \mathrm{q}_{3}\right)=\left[\left(\mathrm{q}_{32 \mathrm{y}}-\mathrm{q}_{21 \mathrm{y}}\right) /\left(\mathrm{q}_{32 \mathrm{x}}-\mathrm{q}_{21 \mathrm{x}}\right)\right]$, or $\tan \phi$, or $\tan \theta$.
Therefore, $\mathrm{F}_{1}=\mathrm{kx}\left[\left(\mathrm{q}_{2} \times \mathrm{q}_{3}\right) / \mathrm{r}^{2}\right]$, as slope of $\mathrm{r}=[(3 \mathrm{~cm}-1 \mathrm{~cm}) /(4 \mathrm{~cm}-3 \mathrm{~cm})]=2 ; \phi=45^{\circ} ; \theta=45^{\circ}$.
For r_{31} :
Let $\tan \phi=\mathrm{o} /$ a, using trigonometric equation. Given that $\phi=45^{\circ} ; \mathrm{q}_{1}=+1.5$ micro C located at $(0 \mathrm{~cm}, 0 \mathrm{~cm}) ; \mathrm{q}_{2}=$ +0.2 micro C located at ($3 \mathrm{~cm}, 1 \mathrm{~cm}$); and $\mathrm{q}_{3}=-0.2$ micro C located at $(4 \mathrm{~cm}, 3 \mathrm{~cm})$; and $\mathrm{o}=$ opposite of a triangle and $\mathrm{a}=$ is adjacent of a triangle.

In this case, q_{3} is a right triangle or Pythagorean triangle in which it has the properties of the following: $\phi=45^{\circ}$, $\mathrm{o}=4 \mathrm{~cm}$, and $\mathrm{a}=3 \mathrm{~cm}$.

Let $\mathrm{a}=\mathrm{q}_{3} \mathrm{x}=\mathrm{a}, \mathrm{b}=\mathrm{q}_{1} \mathrm{x}=\mathrm{o}$, and $\mathrm{c}=\mathrm{r}_{31}=\mathrm{h}$, where h is the hypothenuse of a triangle, $\mathrm{q}_{3} \mathrm{x}=$ distance of the adjacent of the Pythagorean triangle, $\mathrm{q}_{1} \mathrm{x}=$ distance of the opposite of the Pythagorean triangle, and $\mathrm{r}_{31}=$ the distance of the hypothenuse of the Pythagorean triangle.

So, $a^{2}+b^{2}=c^{2}==>c 2=a^{2}+b^{2}$.
Therefore, $\mathrm{r}_{31}=\mathrm{q}_{3} \mathrm{X}^{2}+\mathrm{q}_{1} \mathrm{X}^{2}=\sqrt{3^{2}}+4^{2}=5 \mathrm{~cm}$
For r_{21} :
Let $\tan \theta=\mathrm{o} / \mathrm{a}$, using trigonometric equation. Given that $\theta=45^{\circ} ; \mathrm{q}_{1}=+1.5$ micro C located at $(0 \mathrm{~cm}, 0 \mathrm{~cm}) ; \mathrm{q}_{2}$ $=+0.2$ micro C located at ($3 \mathrm{~cm}, 1 \mathrm{~cm}$); and $\mathrm{q}_{2}=+0.2$ micro C located at $(3 \mathrm{~cm}, 1 \mathrm{~cm})$; and $\mathrm{o}=$ opposite of a triangle and $\mathrm{a}=$ is adjacent of a triangle.

So, $\tan \theta=\mathrm{o} / \mathrm{a}==>\mathrm{a}=\mathrm{o} / \tan \theta$, where $\mathrm{o}=3 \mathrm{~cm}$ and $\theta=45^{\circ}$.
Therefore, $\mathrm{a}=3 / \tan (45)=3 \mathrm{~cm}$.
(b) Suppose $V_{q 3}-V_{q 2}=-\int_{q^{2}}^{q 3} E x d s=E x d s=-k\left(q / r^{2}\right) d r$, where $V_{q 2}$ is the voltage or charge of point $q_{2}, V_{q 3}$ is the voltage or charge of point $\mathrm{q}_{3}, \mathrm{E}$ is the electric field, k Coulomb's constant or electrostatic constant, which is to $9 \times 10^{9} \mathrm{~N} . \mathrm{m}^{2} . \mathrm{C}^{-2}$, ds $=$ derivative of a sphere, $\mathrm{r}=$ distance of separation between charges 2 and 3 . Given $\mathrm{q}_{1}=$ +1.5 micro C located at $(0 \mathrm{~cm}, 0 \mathrm{~cm}) ; \mathrm{q}_{2}=+0.2$ micro C located at $(3 \mathrm{~cm}, 1 \mathrm{~cm})$; and $\mathrm{q}_{3}=-0.2$ micro C located at ($4 \mathrm{~cm}, 3 \mathrm{~cm}$).

Another way to calculate r_{21} and r_{31} if and only if voltages for q_{2} and q_{3} are present.
Let $\mathrm{V}_{\mathrm{q} 3 \mathrm{r} 31}-\mathrm{V}_{\mathrm{q} 2 \mathrm{r} 21}=-\mathrm{kxqq}-\int_{\mathrm{q} 2 \mathrm{r} 21}^{\mathrm{q} 331}\left(\mathrm{dr} / \mathrm{r}^{2}\right)=\mathrm{kq} /\left.\mathrm{r}\right|_{\mathrm{q} 2 \mathrm{r} 21} ^{\mathrm{q} 3 \mathrm{r} 1}=\mathrm{kxq}\left[\left(1 / \mathrm{q}_{3} \mathrm{r}_{31}\right)-\left(1 / \mathrm{q}_{2} \mathrm{r}_{21}\right)\right]$. Given than $\mathrm{V}_{\mathrm{q} 221}=0$ at $\mathrm{q}_{2} \mathrm{r}_{21}=$ ∞.

Therefore, $\mathrm{r}_{31}=\left(\mathrm{kx} \mathrm{q}_{3}\right) / \mathrm{V}_{\mathrm{r} 31}$.

So, $\mathrm{V}_{\mathrm{q} 2221}=\mathrm{kx}\left(\mathrm{q}_{21} / \mathrm{r}_{21}\right)==>\mathrm{r}=\left(\mathrm{kx} \mathrm{q}_{2}\right) / \mathrm{V}_{\mathrm{q} 2 \mathrm{r} 21}$, where $\mathrm{V}_{\mathrm{q} 3 \mathrm{r} 31}=0$ at $\mathrm{q}_{2} \mathrm{r}_{21}=-\infty$.
Therefore, $\mathrm{r}_{21}=\left(\mathrm{k} \mathrm{x} \mathrm{q}_{2}\right) / \mathrm{V}_{\mathrm{r} 21}$.
(c) Suppose $\mathrm{F}_{1}=-\mathrm{F}_{2}$. Let $\mathrm{F}_{1}=\mathrm{F}_{21}=\mathrm{F}_{31}=\mathrm{kx}\left[\left(\mathrm{q}_{1} \mathrm{x}_{2}\right) / \mathrm{r}^{2}\right]$, where F is electrostatic force, $\mathrm{k}=$ Coulomb's constant or electrostatic constant, $\mathrm{q}_{1}, \mathrm{q}_{2}=$ charges, and r distance of separation between charges 1 and 2 . Given $\mathrm{q}_{1}=+1.5$ micro C located at $(0 \mathrm{~cm}, 0 \mathrm{~cm}) ; \mathrm{q}_{2}=+0.2$ micro C located at $(3 \mathrm{~cm}, 1 \mathrm{~cm}) ;$ and $\mathrm{q}_{3}=-0.2$ micro C located at $(4 \mathrm{~cm}, 3 \mathrm{~cm})$.

For F_{21} :
Let $\mathrm{F}_{1}=\mathrm{F}_{21}=\mathrm{F}_{31}=\mathrm{kx}\left[\left(\mathrm{q}_{2} \times \mathrm{q}_{3}\right) / \mathrm{r}^{2}\right]$, given F is electrostatic force, $\mathrm{k}=$ Coulomb's constant or electrostatic constant, which is to $9 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} . \mathrm{C}^{-2}, \mathrm{q}_{2}, \mathrm{q}_{1}=$ charges, and $\mathrm{r}=$ distance of separation between charges 2 and 1 .

So, $\mathrm{F}_{\text {net } 2}=\mathrm{F}_{21}=\mathrm{kx}\left[\left(\mathrm{q}_{2} \times \mathrm{q}_{1}\right) / \mathrm{r}^{2}{ }_{21}\right]$, where $\mathrm{k}=9 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} . \mathrm{C}^{-2} ; \mathrm{q}_{2}=+0.2$ micro $\mathrm{C} ; \mathrm{q}_{1}=+1.5$ micro C $; \mathrm{r}_{21}=3$ cm .

Therefore, $\mathrm{F}_{21}=\left(9 \times 10^{9} \mathrm{~N} . \mathrm{m}^{2} \mathrm{C}^{-2}\right) \times\left[\left(\left(+0.2 \times 10^{-6}\right) \times\left(+1.5 \times 10^{-6}\right)\right) / 3^{2}\right]=0.0003 \mathrm{~N}$
For F_{31} :
Let $\mathrm{F}_{1}=\mathrm{F}_{21}=\mathrm{F}_{31}=\mathrm{kx}\left[\left(\mathrm{q}_{3} \times \mathrm{q}_{1}\right) / \mathrm{r}^{2}\right]$, given F is electrostatic force, $\mathrm{k}=$ Coulomb's constant or electrostatic constant, which is to $9 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} . \mathrm{C}^{-2}, \mathrm{q}_{3}, \mathrm{q}_{1}=$ charges, and $\mathrm{r}=$ distance of separation between charges 3 and 1 .

So, $\mathrm{F}_{1}=\mathrm{F}_{31}=\mathrm{kx}\left[\left(\mathrm{q}_{3} \times \mathrm{q}_{1}\right) / \mathrm{r}^{2}{ }_{31}\right]$, where $\mathrm{k}=9 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} . \mathrm{C}^{-2} ; \mathrm{q}_{3}=-0.2$ micro $\mathrm{C} ; \mathrm{q}_{1}=+1.5$ micro C; $\mathrm{r}_{31}=5$ cm .

Therefore, $\mathrm{F}_{31}=\left(9 \times 10^{9} \mathrm{~N} . \mathrm{m}^{2} \mathrm{C}^{-2}\right) \times\left[\left(\left(-0.2 \times 10^{-6}\right) \times\left(+1.5 \times 10^{-6}\right)\right) / 3^{2}\right]=-0.000108 \mathrm{~N}$
(d) Using Trigonometric Functions: Sin and Cos

For F_{21} :
$\mathrm{F}_{21 \mathrm{x}}=(0.0003 \mathrm{~N}) \cos 45.0^{\circ}=0.000212 \mathrm{~N}$
$\mathrm{F}_{21 \mathrm{y}}=(0.0003 \mathrm{~N}) \sin 45.0^{\circ}=0.000212 \mathrm{~N}$
For F_{31} :
$\mathrm{F}_{31 \mathrm{x}}=(-0.000108 \mathrm{~N}) \cos 45.0^{\circ}=-0.000076368 \mathrm{~N}$
$\mathrm{F}_{31 \mathrm{y}}=(-0.000108 \mathrm{~N}) \sin 45.0^{\circ}=-0.000076368 \mathrm{~N}$
Therefore, $\mathrm{F}_{\text {net } 1 \mathrm{x}}=\mathrm{F}_{21 \mathrm{x}}+\mathrm{F}_{31 \mathrm{x}}=0.000212 \mathrm{~N}+(-0.000076368 \mathrm{~N})=0.000288368$
Therefore, $\mathrm{F}_{\text {netly }}=\mathrm{F}_{21 \mathrm{y}}+\mathrm{F}_{31 \mathrm{y}}=0.000212 \mathrm{~N}+(-0.000076368 \mathrm{~N})=0.000288368$

The red line is the direction of the force from q_{2} on q_{1} and the force from q_{3} on q_{1}.

As part of your solution, you should write equations with variables as well as numerical values for each of the following quantities

$r_{21}=$	$r_{31}=$	
$\theta=$	$\phi=$	$F_{\text {net } 1 x}=$
$F_{21}=$	$F_{31}=$	$F_{\text {net } 1 y}=$
$F_{21 x}=$	$F_{31 x}=$	
$F_{21 y}=$	$F_{31 y}=$	
$\mathrm{r}_{21}=3 \mathrm{~cm}$	$\mathrm{r}_{31}=5 \mathrm{~cm}$	
$\theta=45^{\circ}$	$\phi=45^{\circ}$	$\mathrm{F}_{\text {netlx }}=0.000288368$
$\mathrm{~F}_{21}=0.0003 \mathrm{~N}$	$\mathrm{~F}_{31}=-0.000108 \mathrm{~N}$	$\mathrm{~F}_{\text {netly }}=0.000288368$
$\mathrm{~F}_{21 \mathrm{x}}=0.000212 \mathrm{~N}$	$\mathrm{~F}_{31 \mathrm{x}}=-0.000076368 \mathrm{~N}$	
$\mathrm{~F}_{21 \mathrm{y}}=0.000212 \mathrm{~N}$	$\mathrm{~F}_{31 \mathrm{y}}=-0.000076368 \mathrm{~N}$	

Scan or take a picture of your solution and paste it into this Word document here.
4) Open the website: https://www.geogebra.org/m/eFE9ngHV. This app lets you adjust the charges and positions of three point charges and automatically generates the forces on each of the three charges. Make the charges and positions match those above and compare the answer given by the app to your answer above. Take a screen shot of your GeoGebra app and paste it into this document here.5) Consider a system of three charges on the x axis as follows

$$
\begin{aligned}
& q_{1}=+0.2 \mu \mathrm{C} \text { located at }(0 \mathrm{~cm}, 0 \mathrm{~cm}) \\
& q_{2}=+0.8 \mu \mathrm{C} \text { located at }(6 \mathrm{~cm}, 0 \mathrm{~cm}) \\
& q_{3}=+0.1 \mu \mathrm{C} \text { at an unknown location }
\end{aligned}
$$

Your job is to find the location or locations on the x axis for charge q_{3} such that the total force on q_{3} is zero. Answer parts a, b, and c qualitatively before employing GeoGebra. (DONE)
a. Do you expect to find a location to the left of both charges $(x<0 \mathrm{~cm})$, where the total force on q_{3} is zero? Why or why not?
Yes, I expect to find a location to the left of both charges $(x<0 \mathrm{~cm})$ where the total force on q_{3} is zero because at +0.1 micro C , the total force of q_{3} is going to Southwest or toward the third Cartesian plane.
b. Do you expect to find a location in between the two charges ($0 \mathrm{~cm}<x<6 \mathrm{~cm}$), where the total force on q_{3} is zero? If so, should it be closer to q_{1} or closer to q_{2} ? Why?
Yes, I expect to find a location in between the two charges ($0 \mathrm{~cm}<x<6 \mathrm{~cm}$) where the total force on q_{3} is zero because at +0.1 micro C , the total force of q_{3} is either closer to q_{1} or q_{2} or much closer to q_{2} than q_{l} as the total force of q_{3} gets closer to zero.
c. Do you expect to find a location to the right of both charges $(x>6 \mathrm{~cm})$, where the total force on q_{3} is zero? Why or why not?
No, I do not expect to find a location to the right of both charges $(x>6 \mathrm{~cm})$ where the total force on q_{3} is zero because at +0.1 micro C , the total force of q_{3} is going to Northwest or toward the second Cartesian plane.
d. Adjust the charges on the GeoGebra website app to match this configuration. Move charge q_{3} around to look for positions where the net force on it is zero. Take a screen shot of all such locations and paste them in here. Do they match your expectations above?

i. \mathbf{q}_{3} is equal to $\mathbf{+ 0 . 1}$ micro \mathbf{C}

ii. \mathbf{q}_{3} is equal to 0.0 micro \mathbf{C}

Yes, both graphs match my expectations on parts a, b and c.

6) Repeat step 5 (all of parts a-d) with this new configuration of charges
$q_{1}=+0.2 \mu \mathrm{C}$ located at $(0 \mathrm{~cm}, 0 \mathrm{~cm})$
$q_{2}=-1.8 \mu \mathrm{C}$ located at $(6 \mathrm{~cm}, 0 \mathrm{~cm})$
$q_{3}=+0.1 \mu \mathrm{C}$ at an unknown location
Your job is to find the location or locations on the x axis for charge q_{3} such that the total force on q_{3} is zero.
Answer parts a, b, and c qualitatively before employing GeoGebra. (DONE)
a. Do you expect to find a location to the left of both charges $(x<0 \mathrm{~cm})$, where the total force on q_{3} is zero? Why or why not?
Yes, I do not expect to find a location to the left of both charges ($\mathrm{x}<0 \mathrm{~cm}$) where the total force on q_{3} is zero because at +0.1 micro C, the total force of q_{3} is going to Northwest or toward the first and second Cartesian plane.
b. Do you expect to find a location in between the two charges ($0 \mathrm{~cm}<x<6 \mathrm{~cm}$), where the total force on q_{3} is zero? If so, should it be closer to q_{1} or closer to q_{2} ? Why?
Yes, I expect to find a location in between the two charges ($0 \mathrm{~cm}<x<6 \mathrm{~cm}$) where the total force on q_{3} is zero because at +0.1 micro C , the total force of q_{3} is closer to q_{2} than q_{1} as the total force of q_{3} gets closer to zero.
c. Do you expect to find a location to the right of both charges $(x>6 \mathrm{~cm})$, where the total force on q_{3} is zero? Why or why not?
Yes, I do expect to find a location to the right of both charges $(x>6 \mathrm{~cm})$ where the total force on q_{3} is zero because at +0.1 micro C , the total force of q_{3} is going to Northwest or toward the first and/or second Cartesian plane.
d. Adjust the charges on the GeoGebra website app to match this configuration. Move charge q_{3} around to look for positions where the net force on it is zero. Take a screen shot of all such locations and paste them in here. Do they match your expectations above?
i. q_{3} is equal to $+\mathbf{0 . 1}$ micro C

ii. \mathbf{q}_{3} is equal to $\mathbf{0 . 0}$ micro \mathbf{C}

Yes, both graphs match my expectation on parts \mathbf{a}, b and c .
7) Save this document as a PDF file and post it. (DONE)

Series and Parallel Circuits Lab
Part I. Series Circuit with One-1.5 Volt AA Battery

Part II. Series Circuit with Two-1.5 Volt AA Batteries

Part III. Parallel Circuit with One-1.5 Volt AA Battery

Part IV. Parallel Circuit with Two-1.5 Volt AA Batteries

Part V. Instructions \& Questions

1. Arrange bulbs in Series and Parallel Circuits, including pictures of each set-up.

Please review Parts I, II, III, and IV about the arrangement of bulbs in Series and Parallel Circuits, including pictures of each set up.
2. In which set-up are the bulbs brighter?

Parallel circuit's bulbs are brighter than Series circuit's bulbs.
3. Try for both Series and Parallel, if one bulb is removed will the other go out?

For both Series and Parallel circuits, if one bulb is removed, the other bulb will never go out.
4. Extra Credit: If you have two batteries, can the batteries be arranged in Series and Parallel.

Batteries can be arranged in Series and Parallel circuits.
5. Which is brighter? Explain why this is.

Parallel circuit's batteries are brighter for both one and two bulbs, while Series circuit's batteries for both one and two bulbs are not brighter as Parallel circuit's batteries. Therefore, Parallel circuit batteries are considered isolated systems with their own charges.

Reference

Home: electronicals. c2016-2021. Skokie (IL): American Science \& Surplus; [accessed 2021 Oct 25]. https://www.sciplus.com/Communications-Electronics-h

Charges and Fields

I. Electric Field due to a Point Charge

Concept: the electric field due to a point charge is given by

$$
\stackrel{\rightharpoonup}{E}=\frac{K q}{r^{2}} \widehat{\boldsymbol{u}_{r}}
$$

An electric field can be visualized on paper by drawing lines of force, which give an indication of both the size and the strength of the field. Lines of force are also called field lines. Field lines start on positive charges and end on negative charges

(a)

(b)

Procedure

Go to the web site

https://phet.colorado.edu/en/simulation/charges-and-fields

Once you are at the site "charges and fields" Click "play".
The simulation contain the following items
$x \quad$ A positive charge particle of $1 \mathbf{n C}=10^{-9} \mathrm{C}$
x A negative charge particle of $1 \mathbf{n C}=10^{-9} \mathrm{C}$
x A sensor that shows the value of the Electric Field at any point in space in V / m
x A distance measuring tape in cm.
x A grid that shows the direction of the electric field.

I. Measurement of magnitude and direction of the Electric field due to a point charge

The electric field for a point charge is given by

$$
\begin{equation*}
\vec{E}=\frac{K q}{r^{2}} \widehat{\boldsymbol{u}_{r}} \tag{*}
\end{equation*}
$$

Where the constant k is given by $K=8.99 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$
For the simulation $\mathbf{q}=10^{-9} \mathrm{C}$. The magnitude of the electric field is going to be measured at different directions and different distance r from the point charge. Note that the sensor in the simulation gives the value of E in Volt/meter (V / m). It can be shown that $1 \mathrm{~V} / \mathrm{m}=1 \mathrm{~N} / \mathrm{C}$.

Notice the scale of $1 \mathbf{m}$ in the grid in the lower left corner.

Let's denote the value for E obtained by the equation $E=K q / \mathbf{r}^{\mathbf{2}} \mathbf{u}_{\mathrm{r}}$ as \mathbf{E}_{1}, actually is an
experimental value because you need to measure r. Denote the value obtained by the sensor as E_{2}. Then calculate the \% difference using the formula below

Note:
Percent difference is practically the same as percent error, only instead of one "true" value and one "experimental" value, you compare two experimental values. The formula is:

$$
\% \text { Difference }=\frac{\left|E_{1}-E_{2}\right|}{\frac{1}{2}\left(E_{1}+E_{2}\right)} * 100
$$

Procedure

1. Measure the Electric Field of the point charge in a direction of 0°

Move the positive point charge to the center of the plane. Assume this position as the origin.

Click in the boxes in the upper right side to activate the electric field direction, voltage, values, grid.

Use the sensor (yellow circle) to measure the Electric field at different points along the x axis. The sensor gives the value of the electric filed in V / m

Complete the table below
Table 1: Electric Field of the Point Charge in a Direction of 0°.

X (m) Distance from the positive test charge	E2 using the sensor \mathbf{V} / \mathbf{m}	$\left\|E_{\mathbf{1}}\right\|$ from equation (*) in N/m	\% error from equation (**)
$\mathbf{0 . 5}$	34.2	35.96	5.01
$\mathbf{1}$	9.31	8.99	-3.49
$\mathbf{1 . 5}$	4.35	3.99	-8.63
$\mathbf{2 . 0}$	2.60	2.247	-4.72
$\mathbf{2 . 5}$	1.92	1.438	-28.5
$\mathbf{3 . 0}$	1.55	0.998	-43.3
$\mathbf{3 . 5}$	1.34	0.734	-58.4
$\mathbf{4 . 0}$	1.77	0.562	-103

2. Measure the Electric Field of the point charge in a direction of $\mathbf{9 0}$ 훙 with respect to $+x$ direction
Table 2: Electric Field of the Point Charge in a Direction of 90°.

Y (m) Measured vertically from the positive charge	E2 using the sensor (V/m)	$\left\|E_{1}\right\|$ from equation (*) in N/m	\% error from equation (**)
$\mathbf{0 . 5}$	33.6	35.96	+6.78
$\mathbf{1}$	8.82	8.99	+1.9

$\mathbf{1 . 5}$	3.95	3.99
$\mathbf{2 . 0}$	2.19	2.247

3. Measure the Electric Field of the point charge in a direction of 45° with respect to + x direction.
Use the measuring tape to verify the value of r. At 45°, follow the diagonal of the square grid

Table 3: Electric Field of the Point Charge in a Direction of 45° with Respect to $+\mathbf{X}$ Direction.

$\mathbf{r ~ (m) ~}$	E2 using the sensor V/m	$\left\|E_{\mathbf{1}}\right\|$ from equation $\mathbf{(*)}$ in \mathbf{N} / \mathbf{m}	\% error from equation (**)
$\mathbf{0 . 7 0 5}$	17.9	18.08	+1.00
$\mathbf{1 . 4 1}$	4.39	4.58	+4.23
$\mathbf{2 . 1 2}$	2.11	2.00	-5.35
$\mathbf{2 . 8 2}$	1.48	1.13	-26.8

4. Measure the Electric Field of the point charge in a direction of 45° with the negative x direction.
Use the measuring tape to verify the value of r. At 45°, follow the diagonal of the square grid.

Table 4: Electric Field of the Point Charge in a Direction of 45° with the $-X$ Direction.

r (m)	E2 using the sensor V/m	$\left\|E_{1}\right\|$ from equation $(*)$ in N/m	\% error from equation (**)
$\mathbf{0 . 7 0 5}$	14.0	18.08	+25.4
$\mathbf{1 . 4 1}$	4.77	4.58	-4.06
$\mathbf{2 . 1 2}$	2.34	2.00	-15.7
$\mathbf{2 . 8 2}$	1.48	1.13	-26.8

Analysis

Do Excel plots
Plot E_{2} vs distance x. You have to make two plots, one for the results of part 1 and one for part 2. The plots must be a scatter plot. Do not joint the points with a curve. Below is an example of the Excel plot

Figure 1. Part 1 Data: \mathbf{E}_{2} from the Sensor (N/m) vs. X (m).
Part 1 Data: E2 From The Sensor (N/m) vs. X (m).

Figure 2. Part 2 Data: \mathbf{E}_{2} from the Sensor (N/m) vs. Y (m).
Part 2: E2 From the Sensor (N / m) vs. $\mathrm{Y}(\mathrm{m})$.

Questions

1. Do you obtain the same values for the electric field at directions of 0° and 90° for the same distance?

$$
\stackrel{\rightharpoonup}{E}=\frac{K q}{r^{2}} \widehat{u_{r}}
$$

Yes, I obtained the same numerical values for Parts 1 and $2 \mathrm{E}_{1}$ data at directions of 0° and 90° for the same distance in this experimental condition or set-up because the calculation indicated that I used the same numerical values for distance (r), Coulomb constant (k), and charge of the point of origin, positively charge particle to calculate E_{1} using the formula above highlighted in yellow. On the other hand, for Parts 1 and $2 \mathrm{E}_{2}$ data in this experimental condition or set-up, I used the Sensor on the website to identify or find the numerical value of E_{2} without performing calculation or utilizing the formula above highlighted in yellow. I did not obtain the same numerical values for \mathbf{E}_{2}, but there is a small variation with numerical values for Parts 1 and $2 E_{2}$ data at directions of 0° and 90° for the same distance. See Figure 1 and Figure 2 to visualize the numerical values for Parts 1 and $2 \mathrm{E}_{1}$ data at directions of 0° and 90° for the same distance.
2. Do you obtain the same value of the electric field for symmetric points at a direction of 45° with positive x and at a direction of 45° with negative x ?

$$
\stackrel{\rightharpoonup}{E}=\frac{K q}{r^{2}} \widehat{u_{r}}
$$

Yes, I obtained the numerical values for E_{1} for symmetric points at a direction of 45° with positive x and at a direction of 45° with negative x using the formula highlighted in yellow to calculate E_{1}, including the same numerical values for distance (r), Coulomb constant (k), and charge of the point of origin, positively charge particle. On the other hand, for Parts 3 and $4 \mathrm{E}_{2}$ data in this experimental condition or set-up, I used the Sensor on the website to identify or find the numerical value of E_{2} without performing calculation or utilizing the formula above highlighted in yellow. I did not obtain the same numerical value for E_{2}, but there is a small variation with numerical values for Parts 3 and $4 \mathrm{E}_{2}$ data or symmetric points at a direction of 45° with positive x and at a direction of 45° with negative x .
3. Verify that the magnitude of the electric field must be the same at points at the same distance from the charge. From your data from part 1 and 2 complete the table below

Table 5. Data from Part 1 and Part 2 to Complete the Table

X (m)	E2 using the sensor (V/m) from part 1	$\mathbf{Y}(\mathbf{m})$	E2 using the sensor (V/m) From part 2	\% error difference using E2 for the X and E2 for the Y direction from equation $(* *)$
$\mathbf{0 . 5}$	34.2	$\mathbf{0 . 5}$	33.6	-1.76
$\mathbf{1}$	9.31	$\mathbf{1}$	8.82	-5.405
$\mathbf{1 . 5}$	4.35	$\mathbf{1 . 5}$	3.95	-9.397
$\mathbf{2 . 0}$	2.60	$\mathbf{2 . 0}$	2.19	-17.11

4. Write a conclusion.

$$
\% \text { Difference }=\frac{\left|E_{1}-E_{2}\right|}{\frac{1}{2}\left(E_{1}+E_{2}\right)} \star 100
$$

To find the percent error difference between E_{2} for $X(m)$ and E_{2} for $Y(m)$, use the formula above. As stated above from previous answer on Question No. 1, I did not obtain the same numerical values for E_{2} for $\mathrm{X}(\mathrm{m})$ and E_{2} for $\mathrm{Y}(\mathrm{m})$, but there is a small variation with numerical values for Parts 1 and $2 \mathrm{E}_{2}$ data at directions of 0° and 90° for the same distance as stated on the result from the calculation of the percent error difference between E_{2} for $\mathrm{X}(\mathrm{m})$ and E_{2} for $\mathrm{Y}(\mathrm{m})$. See Figure 1 and Figure 2 to visualize the numerical values and percent error different between E_{2} for $X(m)$ and E_{2} for $Y(m)$ for Parts 1 and $2 \mathrm{E}_{2}$ data at directions of 0° and 90° for the same distance. Therefore, the percent error difference between E_{2} for $\mathrm{X}(\mathrm{m})$ and E_{2} for $\mathrm{Y}(\mathrm{m})$ might have occurred when plotting the Sensor into the grid for a specific distance for E_{2} for $\mathrm{X}(\mathrm{m})$ and E_{2} for $\mathrm{Y}(\mathrm{m})$.

II. Electric Field due to two point charges.

To find the electric filed of two point charges at a given point in space, apply the principle of superposition.

$$
\begin{equation*}
\vec{E}_{\text {total }}=\vec{E}_{1}+\vec{E}_{2} ; \tag{***}
\end{equation*}
$$

At a given distance r; E total is given by

$$
\vec{E}_{\text {total }}=\frac{K q 1}{r^{2}} \widehat{u_{r}}+\frac{K q 2}{r^{2}} \widehat{u_{r}} \cdots(* * *)
$$

In the simulation the numerical values of q_{1} equal q_{2} are equal, and keep in mind that q_{2} is negative

Procedure:

Locate both charges positive and negative separated a distance of 4 m . Assume the origin is located at the position of the positive charge and place the positive charge to the left of the negative charge
Calculate the coulomb force for a distance of 4 m

$$
|F c o u l o m b|=\frac{K q 1 q 2}{r^{2}}=
$$

\qquad N
\mid Fcoulomb $\mid=\left(8.99 \times 10^{9} \mathbf{N m}^{2} / \mathrm{C}^{2}\right)\left(1.00 \times 10^{-9} \mathrm{C}\right)\left(1.00 \times 10^{-9} \mathrm{C}\right) / \mathbf{4}^{2}=\underline{\mathbf{0 . 5 6 2} \mathrm{N}}$
Find the total electric field of the two point charges along the axis that connects the charges. Remember the origin is located at the positive charge, and positive x is the direction to the right of the positive charge. Denote q_{1}, r_{1} for the positive charge and q_{2} and r_{2} for the negative charge
Complete the table:

Table 6. Calculation of Total Electric Field of the Two Point Charges along the X-Axis that Connects the Charges.

r1 (m)	E1 (N/C) From equation (*)	$\begin{array}{\|l\|} \hline \text { Direction } \\ \text { of E } 1 \\ +X \text { or -X } \end{array}$.r2 (m)	E_{2} (N/C) From equation (*)	$\begin{array}{\|l} \hline \text { Direction } \\ \text { of E2 } \\ +X \text { or -X } \end{array}$	E total from equation *** (N/C) Direction $+X$ or -X +X or -X
1	8.99	+X	1	8.99	-	17.98
2	2.247	+X	2	2.247	-X	4.49
3	0.998	+X	3	0.998	-X	1.996
5	0.359	+X	5	0.359	-	0.718
6	0.249	+X	6	0.249	-	. 498
7	0.183	+X	7	0.183	-X	. 366
-1	8.99	-X	-1	8.99	+X	17.98
-2	2.247	-	-2	2.247	+X	4.94

Complete the table using the sensor

Table 7. Total Electric Field of the Two Point Charges along the Axis that Connects the Charges Using the Sensor Empirical Data and Table 6 Calculated Data.

. $\mathbf{r r}_{1}(\mathbf{m})$	Etotal using the sensor in V/m Direction +X or -X	Etotal from the previous table (N/C)	\% error difference from equation (**)
$\mathbf{1}$	9.19	17.98	+64.7
$\mathbf{2}$	2.45	4.49	+58.8
$\mathbf{3}$	1.31	1.996	+41.5
$\mathbf{5}$	0.80	0.718	-10.8
$\mathbf{6}$	1.02	498	-68.8
$\mathbf{7}$	0.76	366	-69.9
$\mathbf{- 1}$	8.62	17.98	+70.4
$\mathbf{- 2}$	2.50	4.94	+65.6

$\%$ Difference $=\frac{\left|E_{1}-E_{2}\right|}{\frac{1}{2}\left(E_{1}+E_{2}\right)} \star 100$

Questions:

1. The \% error difference increase, decrease or is random as function of distance r.

I calculated the percent difference using the $\mathrm{E}_{\text {total }}$ from the previous table (N / C) and Etotal using the Sensor in V/m, Direction +X or -X . The percent error difference decreases as the distance,. $\mathrm{rl}(\mathrm{m})$, of Sensor moves from positive quadrant (x-axis) of the Cartesian plane, and then increases as distance, .rl (m), of Sensor moves to negative quadrant (xaxis) of the Cartesian plane.

2. Show that $1 \mathbf{V} / \mathrm{m}$ is equal to $1 \mathbf{N} / \mathrm{C}$. Use the concept that $1 \mathbf{V}=1 \mathrm{Joule} / \mathrm{C}$

Suppose $\mathrm{W}=\mathrm{Fx} d \mathrm{~s}=\mathrm{qEx} d \mathrm{~s}$, where $\mathrm{W}=$ Work, $\mathrm{F}=$ Force, $d \mathrm{~s}=$ infinitesimal displacement vector, $\mathrm{q}=$ point of charge, and $\mathrm{E}=$ electric field.

Let $\mathrm{W}=-$ change in $\mathrm{U}_{\mathrm{E}}, \mathrm{U}_{\mathrm{E}}=$ electric potential energy for the charge of the field system and given that this is a closed and isolated system.
Let change in $\mathrm{U}_{\mathrm{E}}=-\mathrm{q} \int_{\mathrm{A}}^{\mathrm{Z}} \mathrm{Ex} d \mathrm{~s}$, where points A to Z change in electric potential energy of the system.
However, neither force $q E$ nor the line integral of the system does not depend on points A to Z.

So, $\mathrm{U}_{\mathrm{E}}=0$, given that the position of q in the field system is relative to the configuration of the system, meaning the q can be positively or negatively charge, and not equal to zero.

Therefore, $V=U_{E} / q$, where $V=$ electric potential of the field system.
Therefore, potential difference or change in $V=V_{A}-V_{Z}=$ change in $U_{E} / q=-q \int_{A}^{Z} E x d s$, where $V_{A}-V_{Z}=$ potential difference from points A to Z in the electric field when the q moves between the points of the field system.

Therefore, $\mathrm{W}=\mathrm{q} \mathrm{x}$ change in V , if and only if work is performed by external factor without performing kinetic energy, but moves q through the electric field, while keeping the velocity constant in the field system.

Therefore, electric potential is a measure of potential energy per unit charge; both electric potential and potential difference's standard unit is $1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{C}$, where $\mathrm{V}=$ volt, and J / C $=$ Joules per Coulomb.

Therefore, potential difference also has units of electric field, which multiplies to distance with standard unit of N/C, where N/C = Newton/Coulomb.

Therefore, by definition, electric field is a measure of the rate of change of the electric potential with respect to position.

Therefore, electric field can be expressed to $1 \mathrm{~N} / \mathrm{C}=1 \mathrm{~V} / \mathrm{m}$, where $\mathrm{V} / \mathrm{m}=$ volts per meter.

3. Conclusions.

Using the concept of electric at a point charge, $\mathrm{E}=\mathrm{kq} / \mathrm{r}^{2}$, where $\mathrm{E}=$ electric field, $\mathrm{k}=$ Coulomb's constant, $q=$ point of charge, and $r=$ a distance of a point charge or a separation distance between two points of charges. In this experiment, the origin of the point of charge was always the positive charge, whether the electric field's empirical data
or numerical values, were calculated, or collected using the Sensor, as stated from the charges and fields' website: https://phet.colorado.edu/en/simulation/charges-and-fields. Therefore, the electric field's standard unit from the calculation using the $\mathrm{E}=\mathrm{kq} / \mathrm{r}^{2}$, which used N/C, was similar to the electric field from the Sensor, which used V/m.

Reference

Phet Interactive Simulations: charges and fields. c2021. Boulder (CO): University of Colorado Boulder; [accessed 2021 Oct 30]. https://phet.colorado.edu/sims/html/charges-and-fields/latest/charges-and-fields_en.html

Submission receipt

CCC OIT - No Reply cohelpdesk@ccc.edu
Sun 10/3/2021 2:44 PM
To: Jerico Cruz jcruz156@student.ccc.edu
Jerico Cruz
This email is to confirm that your submission to assignment folder Test One was successful.
Submission ID: 1838067
Received: Sunday, October 3, 2021 2:44 PM CDT
Org Unit: Fall 2021 PHYSICS 236 OQS WR
File(s): JericoMatiasCruz-PhysicsEngineeringll-TestOne.pdf (3350 KB)

Submission receipt

CCC OIT - No Reply cohelpdesk@ccc.edu
Sun 10/31/2021 9:57 PM
To: Jerico Cruz jcruz156@student.ccc.edu
Jerico Cruz
This email is to confirm that your submission to assignment folder Test Two was successful.
Submission ID: 1941576
Received: Sunday, October 31, 2021 9:57 PM CDT
Org Unit: Fall 2021 PHYSICS 236 OQS WR
File(s): JericoMatiasCruz-EngineeringPhysicsII-TestTwo.pdf (5787 KB)

Submission receipt

CCC OIT - No Reply cohelpdesk@ccc.edu
Wed 11/24/2021 7:12 PM
To: Jerico Cruz jcruz156@student.ccc.edu
Jerico Cruz
This email is to confirm that your submission to assignment folder Test Three was successful.
Submission ID: 2028187
Received: Wednesday, November 24, 2021 7:12 PM CST
Org Unit: Fall 2021 PHYSICS 236 OQS WR
File(s): JericoMatiasCruz-EngPhysII-Test3.pdf (5892 KB)

Submission receipt

CCC OIT - No Reply cohelpdesk@ccc.edu
Wed 9/29/2021 6:05 PM
To: Jerico Cruz jcruz156@student.ccc.edu
Jerico Cruz
This email is to confirm that your submission to assignment folder Electrostatics lab was successful.

Submission ID: 1827377
Received: Wednesday, September 29, 2021 6:05 PM CDT
Org Unit: Fall 2021 PHYSICS 236 OQS WR
File(s): JericoMatiasCruz-Electrostatics lab rev1. 2.pdf (262 KB)

Submission receipt

CCC OIT - No Reply cohelpdesk@ccc.edu
Sat 10/30/2021 1:14 AM
To: Jerico Cruz jcruz156@student.ccc.edu
Jerico Cruz
This email is to confirm that your submission to assignment folder Parallel and series lab was successful.

Submission ID: 1937697
Received: Saturday, October 30, 2021 1:14 AM CDT
Org Unit: Fall 2021 PHYSICS 236 OQS WR
File(s): JericoMatiasCruz-Series-Parallel-Lab.doc (5736 KB), JericoMatiasCruz-Series-ParallelLab.pdf (3888 KB)

Submission receipt

CCC OIT - No Reply cohelpdesk@ccc.edu
Sat 10/30/2021 1:06 AM
To: Jerico Cruz jcruz156@student.ccc.edu
Jerico Cruz
This email is to confirm that your submission to assignment folder Charges and Field virtual lab was successful.

Submission ID: 1937690
Received: Saturday, October 30, 2021 1:06 AM CDT
Org Unit: Fall 2021 PHYSICS 236 OQS WR
File(s): JericoMCruz-Charges and Fields virtual lab.doc (754 KB), JericoMCruz-Charges and Fields virtual lab.pdf (321 KB)

My Home

(F) Catalog and Study Tools

日咟 Rental Options

College Success Tips

Career Success Tips
? Help
(1) Give Feedback

Purchase Date: 10/03/2021

Shipping Address

Not Applicable

Billing Address
Jerico M. Cruz 5135 N Keating Ave Chicago IL US 60630

Order number:
\square

Order Summary

Subtotal:	$\mathbf{\$ 1 0 0 . 0 0}$
Shipping:	Free
Estimated Tax*:	$\$ 0.00$
Order Total:	$\mathbf{\$ 1 0 0 . 0 0}$

Inventory fulfilled:

WebAssign Instant Access for Serway/Jewett's Physics for Scientists and

Engineers, Single-Term, 10th Edition
Authors: Serway/Jewett
ISBN 13: 978-1-337-69928-0
ISBN 10: 1-337-69928-4
@2019 | Digital |112

